Помогите пожалуйста! Очень надо! (алгебра 9 кл)
1. Высота треугольника на 1 больше стороны, к которой она проведена. Найдите наибольшее возможное значение длины этой стороны треугольника, если известно, что его площадь не превышает 10.
2. Найдите количество целых решений неравенства
1)x-сторона треугольника, x+1 высота S=x(x+1)/2<=10
x^2+x-20<=0
(x+5)(x-4)<=0
-5<=x<=4
откуда сторона x=4
2)
x^2+(4x^2/(x+2)^2)<=5
x не равен -2
x^2(x+2)^2+4x^2-5(x+2)^2<=0
x^4+4x^3+8x^2-5x^2-20x-20<=0
x^4+4x^3+3x^2-20x-20<=0
Рассмотрим x^4+4x^3+3x^2-20x-20=0
целые делители числа 20 являются +-1,2,+-4 при подстановке чисел -1 и 2 в уравнение, оно обращается в 0 значит является корнем уравнения
Значит если поделить данное уравнение на квадратный трехчлен (x-2)(x+1) получим x^2+5x+10
(x-2)(x+1)(x^2+5x+10)<=0
так как x^2+5x+10>=0, то решение является промежуток -1<=x<=2
Откуда целые решения x=-1,0,1,2
Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.
Найти другие ответыАлгебра, опубликовано 04.12.2018
Алгебра, опубликовано 04.12.2018
Вынесите множитель под знака корня: Срочно! Помогите!
1) 2v3;
2) 5v2;
3) 3v5;
4) 4v7;
Алгебра, опубликовано 04.12.2018
Сррррррррроччно,плиз f(x)=sin4x-2x найти функциональные производные в точке x?=?/12
Алгебра, опубликовано 04.12.2018
Алгебра, опубликовано 04.12.2018