Довести что нет целых чисел х и у, которые подходят к уравнению (х-у)(х+у)=2010
Пусть нашлись такие целые x и y. Так как произведение (x — y)(x + y) четное, то найдётся сомножитель, делящийся на 2. Тогда и второй сомножитель делится на 2, так как они отличаются на 2y — чётное число, а всё произведение делится на 2 * 2 = 4. Но 2010 не делится на 4, противоречие, значит, целочисленных решений нет.
Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.
Найти другие ответыАлгебра, опубликовано 04.12.2018
Алгебра, опубликовано 04.12.2018
Вынесите множитель под знака корня: Срочно! Помогите!
1) 2v3;
2) 5v2;
3) 3v5;
4) 4v7;
Алгебра, опубликовано 04.12.2018
Сррррррррроччно,плиз f(x)=sin4x-2x найти функциональные производные в точке x?=?/12
Алгебра, опубликовано 04.12.2018
Алгебра, опубликовано 04.12.2018