Не выполняя построения найдите точки пересечения окружности x^2+y^2=4 и параболы y=2-x^2 или докажите, что их нет

X?+y?=4; y=2-x?
x?+(2-x?)?-2-2=0; (2-x?)?-(2-x?)-2=0; 2-x?=t
t?-t-2=0?t?=2; t?=-1
2-x?=2?x?=0?x?=0;y?=2-0=2
2-x?=-1?x?=3?x?=v3; x?=-v3; y?=y?=2-3=-1
есть три точки пересечения: (0;2),(v3;-1) и (-v3;-1)

Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.

Найти другие ответы

Загрузить картинку
© УчиРУНЕТ